IMe XII IPA

Sabtu, 16 November 2013

RUMUS INTEGRAL

Berikut ini adalah kumpulan rumus-rumus yang biasa dipakai untuk menyelesaikan soal-soal integral.

Integral Fungsi Aljabar

  \begin{align*}   \boxed{\int k \: \mathrm{d}x = kx + C} \end{align*}
  \begin{align*}   \boxed{\int x^n \: \mathrm{d}x = \frac{x^{n+1}}{n+1} + C \quad \text{Untuk } x \neq -1} \end{align*}
  \begin{align*}   \boxed{\int (ax+b)^n \: \mathrm{d}x = \frac{(ax+b)^{n+1}}{a(n+1)} + C \quad \text{Untuk } x \neq -1} \end{align*}
  \begin{align*}   \boxed{\int \frac{1}{x} \: \mathrm{d}x = \ln |x| + C} \end{align*}
  \begin{align*}   \boxed{\int \frac{c}{ax+b} \: \mathrm{d}x = \frac{c}{a} \ln |ax+b| + C} \end{align*}

Integral Fungsi Eksponen

  \begin{align*}   \boxed{\int e^x \: \mathrm{d}x = e^x + C} \end{align*}
  \begin{align*}   \boxed{\int a^x \: \mathrm{d}x = \frac{a^x}{\ln a} + C} \end{align*}

Integral Fungsi Logaritma

  \begin{align*}   \boxed{\int \ln x \: \mathrm{d}x = x \ln x - x + C} \end{align*}
  \begin{align*}   \boxed{\int \log_a x \: \mathrm{d}x = x \log_a x - \frac{x}{\ln a} + C} \end{align*}

Integral Fungsi Trigonometri

  \begin{align*}   \boxed{\int \sin x \: \mathrm{d}x = -\cos x + C} \end{align*}
  \begin{align*}   \boxed{\int \cos x \: \mathrm{d}x = \sin x + C} \end{align*}
  \begin{align*}   \boxed{\int \tan x \: \mathrm{d}x = -\ln|\cos x| + C = \ln |\sec x| + C} \end{align*}
  \begin{align*}   \boxed{\int \cot x \: \mathrm{d}x = \ln |\sin x| + C} \end{align*}
  \begin{align*}   \boxed{\int \sec x \: \mathrm{d}x = \ln |\sec x + \tan x| + C} \end{align*}
  \begin{align*}   \boxed{\int \csc x \: \mathrm{d}x = -\ln |\csc x + \cot x| + C} \end{align*}
  \begin{align*}   \boxed{\int \sec^2 x \: \mathrm{d}x = \tan x + C} \end{align*}
  \begin{align*}   \boxed{\int \csc^2 x \: \mathrm{d}x = -\cot x + C} \end{align*}
  \begin{align*}   \boxed{\int \sec x \tan x\: \mathrm{d}x = \sec x + C} \end{align*}
  \begin{align*}   \boxed{\int \csc x \cot x \: \mathrm{d}x = -\csc x + C} \end{align*}

Integral Fungsi Invers Trigonometri

  \begin{align*}   \boxed{\int \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \arcsin x + C} \end{align*}
  \begin{align*}   \boxed{\int \frac{\mathrm{d}x}{x\sqrt{x^2-1}} = \arcsec x + C} \end{align*}
  \begin{align*}   \boxed{\int \frac{\mathrm{d}x}{1+x^2} = \arctan x + C} \end{align*}
  \begin{align*}   \boxed{\int \arcsin x \: \mathrm{d}x = x \arcsin x + \sqrt{1-x^2} + C} \end{align*}
  \begin{align*}   \boxed{\int \arccos x \: \mathrm{d}x = x \arccos x - \sqrt{1-x^2} + C} \end{align*}
  \begin{align*}   \boxed{\int \arctan x \: \mathrm{d}x = x \arctan x - \frac{1}{2} \ln |1+x^2| + C} \end{align*}
  \begin{align*}   \boxed{\int \operatorname{arccot} x \: \mathrm{d}x = x \operatorname{arccot} x + \frac{1}{2} \ln |1+x^2| + C} \end{align*}

Integral Parsial

  \begin{align*}   \boxed{\int u \: \mathrm{d}v = u \cdot v - \int v \: \mathrm{d}u} \end{align*}
Read More

RUMUS TRIGONOMETRI SMA LENGKAP

A. Bentuk Umum


B. Sudut-Sudut Istimewa


C. Hubungan Sudut Berelasi antara Sin, Cos dan Tangen



D. Rumus-rumus Trigonometri

1. Aturan sinus


2. Aturan Cosinus


3. Luas Segitiga ABC


4. Jumlah dan Selish Dua Sudut



5. Sudut 2A (Sudut Kembar)


6. Hasil Kali Dua Fungsi Trigonometri


7. 
Jumlah Selisih Dua Fungsi Trigonometri


8. Persamaan Trigonometri


9. Bentuk a Cos x + b Sin x


10. Bentuk a Cos x + b Sin x = c

11. Nilai Maksimum dan Minimum Fungsi f(x) =a Cos x + b Sin x 

LINK UNTUK DOWNLOAD DOCUMENTNYA
Read More

Rabu, 06 November 2013

Diberdayakan oleh Blogger.

© 2011 IMe XII IPA, AllRightsReserved.

Designed by ScreenWritersArena